123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960 |
- using System;
- using Unity.Burst;
- using Unity.Collections;
- using Unity.Jobs;
- using Unity.Mathematics;
-
- namespace UnityEngine.Rendering.Universal
- {
- [BurstCompile(FloatMode = FloatMode.Default, DisableSafetyChecks = true, OptimizeFor = OptimizeFor.Performance)]
- struct TilingJob : IJobFor
- {
- [ReadOnly]
- public NativeArray<VisibleLight> lights;
-
- [ReadOnly]
- public NativeArray<VisibleReflectionProbe> reflectionProbes;
-
- [NativeDisableParallelForRestriction]
- public NativeArray<InclusiveRange> tileRanges;
-
- public int itemsPerTile;
- public int rangesPerItem;
-
- public Fixed2<float4x4> worldToViews;
-
- public float2 tileScale;
- public float2 tileScaleInv;
- public Fixed2<float> viewPlaneBottoms;
- public Fixed2<float> viewPlaneTops;
- public Fixed2<float4> viewToViewportScaleBiases;
- public int2 tileCount;
- public float near;
- public bool isOrthographic;
-
- InclusiveRange m_TileYRange;
- int m_Offset;
- int m_ViewIndex;
- float2 m_CenterOffset;
-
- public void Execute(int jobIndex)
- {
- var index = jobIndex % itemsPerTile;
- m_ViewIndex = jobIndex / itemsPerTile;
- m_Offset = jobIndex * rangesPerItem;
-
- m_TileYRange = new InclusiveRange(short.MaxValue, short.MinValue);
-
- for (var i = 0; i < rangesPerItem; i++)
- {
- tileRanges[m_Offset + i] = new InclusiveRange(short.MaxValue, short.MinValue);
- }
-
-
- if (index < lights.Length)
- {
- if (isOrthographic) { TileLightOrthographic(index); }
- else { TileLight(index); }
- }
- else { TileReflectionProbe(index); }
- }
-
- void TileLight(int lightIndex)
- {
- var light = lights[lightIndex];
- if (light.lightType != LightType.Point && light.lightType != LightType.Spot)
- {
- return;
- }
-
- var lightToWorld = (float4x4)light.localToWorldMatrix;
- var lightPositionVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz;
- lightPositionVS.z *= -1;
- if (lightPositionVS.z >= near) ExpandY(lightPositionVS);
- var lightDirectionVS = math.normalize(math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz);
- lightDirectionVS.z *= -1;
-
- var halfAngle = math.radians(light.spotAngle * 0.5f);
- var range = light.range;
- var rangesq = square(range);
- var cosHalfAngle = math.cos(halfAngle);
- var coneHeight = cosHalfAngle * range;
-
- // Radius of circle formed by intersection of sphere and near plane.
- // Found using Pythagoras with a right triangle formed by three points:
- // (a) light position
- // (b) light position projected to near plane
- // (c) a point on the near plane at a distance `range` from the light position
- // (i.e. lies both on the sphere and the near plane)
- // Thus the hypotenuse is formed by (a) and (c) with length `range`, and the known side is formed
- // by (a) and (b) with length equal to the distance between the near plane and the light position.
- // The remaining unknown side is formed by (b) and (c) with length equal to the radius of the circle.
- // m_ClipCircleRadius = sqrt(sq(light.range) - sq(m_Near - m_LightPosition.z));
- var sphereClipRadius = math.sqrt(rangesq - square(near - lightPositionVS.z));
-
- // Assumes a point on the sphere, i.e. at distance `range` from the light position.
- // If spot light, we check the angle between the direction vector from the light position and the light direction vector.
- // Note that division by range is to normalize the vector, as we know that the resulting vector will have length `range`.
- bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point ||
- math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= cosHalfAngle;
-
- // Project light sphere onto YZ plane, find the horizon points, and re-construct view space position of found points.
- // CalculateSphereYBounds(lightPositionVS, range, near, sphereClipRadius, out var sphereBoundY0, out var sphereBoundY1);
- GetSphereHorizon(lightPositionVS.yz, range, near, sphereClipRadius, out var sphereBoundYZ0, out var sphereBoundYZ1);
- var sphereBoundY0 = math.float3(lightPositionVS.x, sphereBoundYZ0);
- var sphereBoundY1 = math.float3(lightPositionVS.x, sphereBoundYZ1);
- if (SpherePointIsValid(sphereBoundY0)) ExpandY(sphereBoundY0);
- if (SpherePointIsValid(sphereBoundY1)) ExpandY(sphereBoundY1);
-
- // Project light sphere onto XZ plane, find the horizon points, and re-construct view space position of found points.
- GetSphereHorizon(lightPositionVS.xz, range, near, sphereClipRadius, out var sphereBoundXZ0, out var sphereBoundXZ1);
- var sphereBoundX0 = math.float3(sphereBoundXZ0.x, lightPositionVS.y, sphereBoundXZ0.y);
- var sphereBoundX1 = math.float3(sphereBoundXZ1.x, lightPositionVS.y, sphereBoundXZ1.y);
- if (SpherePointIsValid(sphereBoundX0)) ExpandY(sphereBoundX0);
- if (SpherePointIsValid(sphereBoundX1)) ExpandY(sphereBoundX1);
-
- if (light.lightType == LightType.Spot)
- {
- // Cone base
- var baseRadius = math.sqrt(range * range - coneHeight * coneHeight);
- var baseCenter = lightPositionVS + lightDirectionVS * coneHeight;
-
- // Project cone base (a circle) into the YZ plane, find the horizon points, and re-construct view space position of found points.
- // When projecting a circle to a plane, it becomes an ellipse where the major axis is parallel to the line
- // of intersection of the projection plane and the circle plane. We can get this by taking the cross product
- // of the two plane normals, as the line of intersection will have to be a vector in both planes, and thus
- // orthogonal to both normals.
- // If the two plane normals are parallel, the cross product would return 0. In that case, the circle will
- // project to a line segment, so we pick a vector in the plane pointing in the direction we're interested
- // in finding horizon points in.
- var baseUY = math.abs(math.abs(lightDirectionVS.x) - 1) < 1e-6f ? math.float3(0, 1, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(1, 0, 0)));
- var baseVY = math.cross(lightDirectionVS, baseUY);
- GetProjectedCircleHorizon(baseCenter.yz, baseRadius, baseUY.yz, baseVY.yz, out var baseY1UV, out var baseY2UV);
- var baseY1 = baseCenter + baseY1UV.x * baseUY + baseY1UV.y * baseVY;
- var baseY2 = baseCenter + baseY2UV.x * baseUY + baseY2UV.y * baseVY;
- if (baseY1.z >= near) ExpandY(baseY1);
- if (baseY2.z >= near) ExpandY(baseY2);
-
- // Project cone base into the XZ plane, find the horizon points, and re-construct view space position of found points.
- // See comment for YZ plane for details.
- var baseUX = math.abs(math.abs(lightDirectionVS.y) - 1) < 1e-6f ? math.float3(1, 0, 0) : math.normalize(math.cross(lightDirectionVS, math.float3(0, 1, 0)));
- var baseVX = math.cross(lightDirectionVS, baseUX);
- GetProjectedCircleHorizon(baseCenter.xz, baseRadius, baseUX.xz, baseVX.xz, out var baseX1UV, out var baseX2UV);
- var baseX1 = baseCenter + baseX1UV.x * baseUX + baseX1UV.y * baseVX;
- var baseX2 = baseCenter + baseX2UV.x * baseUX + baseX2UV.y * baseVX;
- if (baseX1.z >= near) ExpandY(baseX1);
- if (baseX2.z >= near) ExpandY(baseX2);
-
- // Handle base circle clipping by intersecting it with the near-plane if needed.
- if (GetCircleClipPoints(baseCenter, lightDirectionVS, baseRadius, near, out var baseClip0, out var baseClip1))
- {
- ExpandY(baseClip0);
- ExpandY(baseClip1);
- }
-
- bool ConicPointIsValid(float3 p) =>
- math.dot(math.normalize(p - lightPositionVS), lightDirectionVS) >= 0 &&
- math.dot(p - lightPositionVS, lightDirectionVS) <= coneHeight;
-
- // Calculate Z bounds of cone and check if it's overlapping with the near plane.
- // From https://www.iquilezles.org/www/articles/diskbbox/diskbbox.htm
- var baseExtentZ = baseRadius * math.sqrt(1.0f - square(lightDirectionVS.z));
- var coneIsClipping = near >= math.min(baseCenter.z - baseExtentZ, lightPositionVS.z) && near <= math.max(baseCenter.z + baseExtentZ, lightPositionVS.z);
-
- var coneU = math.cross(lightDirectionVS, lightPositionVS);
- // The cross product will be the 0-vector if the light-direction and camera-to-light-position vectors are parallel.
- // In that case, {1, 0, 0} is orthogonal to the light direction and we use that instead.
- coneU = math.csum(coneU) != 0f ? math.normalize(coneU) : math.float3(1, 0, 0);
- var coneV = math.cross(lightDirectionVS, coneU);
-
- if (coneIsClipping)
- {
- var r = baseRadius / coneHeight;
-
- // Find the Y bounds of the near-plane cone intersection, i.e. where y' = 0
- var thetaY = FindNearConicTangentTheta(lightPositionVS.yz, lightDirectionVS.yz, r, coneU.yz, coneV.yz);
- var p0Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.x);
- var p1Y = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaY.y);
- if (ConicPointIsValid(p0Y)) ExpandY(p0Y);
- if (ConicPointIsValid(p1Y)) ExpandY(p1Y);
-
- // Find the X bounds of the near-plane cone intersection, i.e. where x' = 0
- var thetaX = FindNearConicTangentTheta(lightPositionVS.xz, lightDirectionVS.xz, r, coneU.xz, coneV.xz);
- var p0X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.x);
- var p1X = EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, thetaX.y);
- if (ConicPointIsValid(p0X)) ExpandY(p0X);
- if (ConicPointIsValid(p1X)) ExpandY(p1X);
- }
-
- // Calculate the lines making up the sides of the cone as seen from the camera. `l1` and `l2` form lines
- // from the light position.
- GetConeSideTangentPoints(lightPositionVS, lightDirectionVS, cosHalfAngle, baseRadius, coneHeight, range, coneU, coneV, out var l1, out var l2);
-
- {
- var planeNormal = math.float3(0, 1, viewPlaneBottoms[m_ViewIndex]);
- var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
- var l1x = lightPositionVS + l1 * l1t;
- if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x);
- }
- {
- var planeNormal = math.float3(0, 1, viewPlaneTops[m_ViewIndex]);
- var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
- var l1x = lightPositionVS + l1 * l1t;
- if (l1t >= 0 && l1t <= 1 && l1x.z >= near) ExpandY(l1x);
- }
-
- m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
-
- // Calculate tile plane ranges for cone.
- for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
- {
- var planeRange = InclusiveRange.empty;
-
- // Y-position on the view plane (Z=1)
- var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
-
- var planeNormal = math.float3(0, 1, -planeY);
-
- // Intersect lines with y-plane and clip if needed.
- var l1t = math.dot(-lightPositionVS, planeNormal) / math.dot(l1, planeNormal);
- var l1x = lightPositionVS + l1 * l1t;
- if (l1t >= 0 && l1t <= 1 && l1x.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(l1x).x, 0, tileCount.x - 1));
-
- var l2t = math.dot(-lightPositionVS, planeNormal) / math.dot(l2, planeNormal);
- var l2x = lightPositionVS + l2 * l2t;
- if (l2t >= 0 && l2t <= 1 && l2x.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(l2x).x, 0, tileCount.x - 1));
-
- if (IntersectCircleYPlane(planeY, baseCenter, lightDirectionVS, baseUY, baseVY, baseRadius, out var circleTile0, out var circleTile1))
- {
- if (circleTile0.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(circleTile0).x, 0, tileCount.x - 1));
- if (circleTile1.z >= near) planeRange.Expand((short)math.clamp(ViewToTileSpace(circleTile1).x, 0, tileCount.x - 1));
- }
-
- if (coneIsClipping)
- {
- var y = planeY * near;
- var r = baseRadius / coneHeight;
- var theta = FindNearConicYTheta(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, y);
- var p0 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.x).x, y, near);
- var p1 = math.float3(EvaluateNearConic(near, lightPositionVS, lightDirectionVS, r, coneU, coneV, theta.y).x, y, near);
- if (ConicPointIsValid(p0)) planeRange.Expand((short)math.clamp(ViewToTileSpace(p0).x, 0, tileCount.x - 1));
- if (ConicPointIsValid(p1)) planeRange.Expand((short)math.clamp(ViewToTileSpace(p1).x, 0, tileCount.x - 1));
- }
-
- // Write to tile ranges above and below the plane. Note that at `m_Offset` we store Y-range.
- var tileIndex = m_Offset + 1 + planeIndex;
- tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
- tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
- }
- }
-
- m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
-
- // Calculate tile plane ranges for sphere.
- for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
- {
- var planeRange = InclusiveRange.empty;
-
- var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
- GetSphereYPlaneHorizon(lightPositionVS, range, near, sphereClipRadius, planeY, out var sphereTile0, out var sphereTile1);
- if (SpherePointIsValid(sphereTile0)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile0).x, 0, tileCount.x - 1));
- if (SpherePointIsValid(sphereTile1)) planeRange.Expand((short)math.clamp(ViewToTileSpace(sphereTile1).x, 0, tileCount.x - 1));
-
- var tileIndex = m_Offset + 1 + planeIndex;
- tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
- tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
- }
-
- tileRanges[m_Offset] = m_TileYRange;
- }
-
- void TileLightOrthographic(int lightIndex)
- {
- var light = lights[lightIndex];
- var lightToWorld = (float4x4)light.localToWorldMatrix;
- var lightPosVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c3.xyz, 1)).xyz;
- lightPosVS.z *= -1;
- ExpandOrthographic(lightPosVS);
- var lightDirVS = math.mul(worldToViews[m_ViewIndex], math.float4(lightToWorld.c2.xyz, 0)).xyz;
- lightDirVS.z *= -1;
- lightDirVS = math.normalize(lightDirVS);
-
- var halfAngle = math.radians(light.spotAngle * 0.5f);
- var range = light.range;
- var rangeSq = square(range);
- var cosHalfAngle = math.cos(halfAngle);
- var coneHeight = cosHalfAngle * range;
- var coneHeightSq = square(coneHeight);
- var coneHeightInv = 1f / coneHeight;
- var coneHeightInvSq = square(coneHeightInv);
-
- bool SpherePointIsValid(float3 p) => light.lightType == LightType.Point ||
- math.dot(math.normalize(p - lightPosVS), lightDirVS) >= cosHalfAngle;
-
- var sphereBoundY0 = lightPosVS - math.float3(0, range, 0);
- var sphereBoundY1 = lightPosVS + math.float3(0, range, 0);
- var sphereBoundX0 = lightPosVS - math.float3(range, 0, 0);
- var sphereBoundX1 = lightPosVS + math.float3(range, 0, 0);
-
- if (SpherePointIsValid(sphereBoundY0)) ExpandOrthographic(sphereBoundY0);
- if (SpherePointIsValid(sphereBoundY1)) ExpandOrthographic(sphereBoundY1);
- if (SpherePointIsValid(sphereBoundX0)) ExpandOrthographic(sphereBoundX0);
- if (SpherePointIsValid(sphereBoundX1)) ExpandOrthographic(sphereBoundX1);
-
- var circleCenter = lightPosVS + lightDirVS * coneHeight;
- var circleRadius = math.sqrt(rangeSq - coneHeightSq);
- var circleRadiusSq = square(circleRadius);
- var circleUp = math.normalize(math.float3(0, 1, 0) - lightDirVS * lightDirVS.y);
- var circleRight = math.normalize(math.float3(1, 0, 0) - lightDirVS * lightDirVS.x);
- var circleBoundY0 = circleCenter - circleUp * circleRadius;
- var circleBoundY1 = circleCenter + circleUp * circleRadius;
-
- if (light.lightType == LightType.Spot)
- {
- var circleBoundX0 = circleCenter - circleRight * circleRadius;
- var circleBoundX1 = circleCenter + circleRight * circleRadius;
- ExpandOrthographic(circleBoundY0);
- ExpandOrthographic(circleBoundY1);
- ExpandOrthographic(circleBoundX0);
- ExpandOrthographic(circleBoundX1);
- }
-
- m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
-
- // Find two lines in screen-space for the cone if the light is a spot.
- float coneDir0X = 0, coneDir0YInv = 0, coneDir1X = 0, coneDir1YInv = 0;
- if (light.lightType == LightType.Spot)
- {
- // Distance from light position to and radius of sphere fitted to the end of the cone.
- var sphereDistance = coneHeight + circleRadiusSq * coneHeightInv;
- var sphereRadius = math.sqrt(square(circleRadiusSq) * coneHeightInvSq + circleRadiusSq);
- var directionXYSqInv = math.rcp(math.lengthsq(lightDirVS.xy));
- var polarIntersection = -circleRadiusSq * coneHeightInv * directionXYSqInv * lightDirVS.xy;
- var polarDir = math.sqrt((square(sphereRadius) - math.lengthsq(polarIntersection)) * directionXYSqInv) * math.float2(lightDirVS.y, -lightDirVS.x);
- var conePBase = lightPosVS.xy + sphereDistance * lightDirVS.xy + polarIntersection;
- var coneP0 = conePBase - polarDir;
- var coneP1 = conePBase + polarDir;
-
- coneDir0X = coneP0.x - lightPosVS.x;
- coneDir0YInv = math.rcp(coneP0.y - lightPosVS.y);
- coneDir1X = coneP1.x - lightPosVS.x;
- coneDir1YInv = math.rcp(coneP1.y - lightPosVS.y);
- }
-
- // Tile plane ranges
- for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
- {
- var planeRange = InclusiveRange.empty;
-
- // Sphere
- var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
- var sphereX = math.sqrt(rangeSq - square(planeY - lightPosVS.y));
- var sphereX0 = math.float3(lightPosVS.x - sphereX, planeY, lightPosVS.z);
- var sphereX1 = math.float3(lightPosVS.x + sphereX, planeY, lightPosVS.z);
- if (SpherePointIsValid(sphereX0)) { ExpandRangeOrthographic(ref planeRange, sphereX0.x); }
- if (SpherePointIsValid(sphereX1)) { ExpandRangeOrthographic(ref planeRange, sphereX1.x); }
-
- if (light.lightType == LightType.Spot)
- {
- // Circle
- if (planeY >= circleBoundY0.y && planeY <= circleBoundY1.y)
- {
- var intersectionDistance = (planeY - circleCenter.y) / circleUp.y;
- var closestPointX = circleCenter.x + intersectionDistance * circleUp.x;
- var intersectionDirX = -lightDirVS.z / math.length(math.float3(-lightDirVS.z, 0, lightDirVS.x));
- var sideDistance = math.sqrt(square(circleRadius) - square(intersectionDistance));
- var circleX0 = closestPointX - sideDistance * intersectionDirX;
- var circleX1 = closestPointX + sideDistance * intersectionDirX;
- ExpandRangeOrthographic(ref planeRange, circleX0);
- ExpandRangeOrthographic(ref planeRange, circleX1);
- }
-
- // Cone
- var deltaY = planeY - lightPosVS.y;
- var coneT0 = deltaY * coneDir0YInv;
- var coneT1 = deltaY * coneDir1YInv;
- if (coneT0 >= 0 && coneT0 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT0 * coneDir0X); }
- if (coneT1 >= 0 && coneT1 <= 1) { ExpandRangeOrthographic(ref planeRange, lightPosVS.x + coneT1 * coneDir1X); }
- }
-
- var tileIndex = m_Offset + 1 + planeIndex;
- tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
- tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
- }
-
- tileRanges[m_Offset] = m_TileYRange;
- }
-
- static readonly float3[] k_CubePoints =
- {
- new(-1, -1, -1),
- new(-1, -1, +1),
- new(-1, +1, -1),
- new(-1, +1, +1),
- new(+1, -1, -1),
- new(+1, -1, +1),
- new(+1, +1, -1),
- new(+1, +1, +1),
- };
-
- // Each item represents 3 lines, with x being the start index and yzw the end indices.
- static readonly int4[] k_CubeLineIndices =
- {
- // (-1, -1, -1) -> {(+1, -1, -1), (-1, +1, -1), (-1, -1, +1)}
- new(0, 4, 2, 1),
-
- // (-1, +1, +1) -> {(+1, +1, +1), (-1, -1, +1), (-1, +1, -1)}
- new(3, 7, 1, 2),
-
- // (+1, -1, +1) -> {(-1, -1, +1), (+1, +1, +1), (+1, -1, -1)}
- new(5, 1, 7, 4),
-
- // (+1, +1, -1) -> {(-1, +1, -1), (+1, -1, -1), (+1, +1, +1)}
- new(6, 2, 4, 7),
- };
-
- void TileReflectionProbe(int index)
- {
- // The algorithm used here works by clipping all the lines of the cube against the near-plane, and then
- // projects the resulting points to the view plane. These points are then used to construct a 2D convex
- // hull, which we can iterate linearly to get the lines on screen making up the cube.
-
- var reflectionProbe = reflectionProbes[index - lights.Length];
- var centerWS = (float3)reflectionProbe.bounds.center;
- var extentsWS = (float3)reflectionProbe.bounds.extents;
-
- // The vertices of the cube in view space.
- var points = new NativeArray<float3>(k_CubePoints.Length, Allocator.Temp);
- // This is initially filled with just the cube vertices that lie in front of the near plane.
- var clippedPoints = new NativeArray<float2>(k_CubePoints.Length + k_CubeLineIndices.Length * 3, Allocator.Temp);
- var clippedPointsCount = 0;
- var leftmostIndex = 0;
- for (var i = 0; i < k_CubePoints.Length; i++)
- {
- var point = math.mul(worldToViews[m_ViewIndex], math.float4(centerWS + extentsWS * k_CubePoints[i], 1)).xyz;
- point.z *= -1;
- points[i] = point;
- if (point.z >= near)
- {
- var clippedPoint = isOrthographic ? point.xy : point.xy/point.z;
- var clippedIndex = clippedPointsCount++;
- clippedPoints[clippedIndex] = clippedPoint;
- if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex;
- }
- }
-
- // Clip the cube's line segments with the near plane, and add the new vertices to clippedPoints. Only lines
- // that are clipped will generate new vertices.
- for (var i = 0; i < k_CubeLineIndices.Length; i++)
- {
- var indices = k_CubeLineIndices[i];
- var p0 = points[indices.x];
- for (var j = 0; j < 3; j++)
- {
- var p1 = points[indices[j+1]];
- // The entire line is in front of the near plane.
- if (p0.z < near && p1.z < near) continue;
- // Check whether the line needs clipping.
- if (p0.z < near || p1.z < near)
- {
- var d = (near - p0.z) / (p1.z - p0.z);
- var p = math.lerp(p0, p1, d);
- var clippedPoint = isOrthographic ? p.xy : p.xy/p.z;
- var clippedIndex = clippedPointsCount++;
- clippedPoints[clippedIndex] = clippedPoint;
- if (clippedPoint.x < clippedPoints[leftmostIndex].x) leftmostIndex = clippedIndex;
- }
- }
- }
-
- // Construct the convex hull. It is formed by the line loop consisting of the points in the array.
- var hullPoints = new NativeArray<float2>(clippedPointsCount, Allocator.Temp);
- var hullPointsCount = 0;
-
- if (clippedPointsCount > 0)
- {
- // Start with the leftmost point, as that is guaranteed to be on the hull.
- var hullPointIndex = leftmostIndex;
-
- // Find the remaining hull points until we end up back at the leftmost point.
- do
- {
- var hullPoint = clippedPoints[hullPointIndex];
- ExpandY(math.float3(hullPoint, 1));
- hullPoints[hullPointsCount++] = hullPoint;
-
- // Find the endpoint resulting in the leftmost turning line. This line will be a part of the hull.
- var endpointIndex = 0;
- var endpointLine = clippedPoints[endpointIndex] - hullPoint;
- for (var i = 0; i < clippedPointsCount; i++)
- {
- var candidateLine = clippedPoints[i] - hullPoint;
- var det = math.determinant(math.float2x2(endpointLine, candidateLine));
-
- // Check if point i lies on the left side of the line to the current endpoint, or if it lies
- // collinear to the current endpoint but farther away.
- if (endpointIndex == hullPointIndex || det > 0 || (det == 0.0f && math.lengthsq(candidateLine) > math.lengthsq(endpointLine)))
- {
- endpointIndex = i;
- endpointLine = candidateLine;
- }
- }
-
- hullPointIndex = endpointIndex;
- } while (hullPointIndex != leftmostIndex && hullPointsCount < clippedPointsCount);
-
- m_TileYRange.Clamp(0, (short)(tileCount.y - 1));
-
- // Calculate tile plane ranges for sphere.
- for (var planeIndex = m_TileYRange.start + 1; planeIndex <= m_TileYRange.end; planeIndex++)
- {
- var planeRange = InclusiveRange.empty;
-
- var planeY = math.lerp(viewPlaneBottoms[m_ViewIndex], viewPlaneTops[m_ViewIndex], planeIndex * tileScaleInv.y);
-
- for (var i = 0; i < hullPointsCount; i++)
- {
- var hp0 = hullPoints[i];
- var hp1 = hullPoints[(i + 1) % hullPointsCount];
-
- // planeY = hp0 + t * (hp1 - hp0) => planeY - hp0 = t * (hp1 - hp0) => (planeY - hp0) / (hp1 - hp0) = t
- var t = (planeY - hp0.y) / (hp1.y - hp0.y);
- if (t < 0 || t > 1) continue;
- var x = math.lerp(hp0.x, hp1.x, t);
-
- var p = math.float3(x, planeY, 1);
- var pTS = isOrthographic ? ViewToTileSpaceOrthographic(p) : ViewToTileSpace(p);
- planeRange.Expand((short)math.clamp(pTS.x, 0, tileCount.x - 1));
- }
-
- var tileIndex = m_Offset + 1 + planeIndex;
- tileRanges[tileIndex] = InclusiveRange.Merge(tileRanges[tileIndex], planeRange);
- tileRanges[tileIndex - 1] = InclusiveRange.Merge(tileRanges[tileIndex - 1], planeRange);
- }
-
- tileRanges[m_Offset] = m_TileYRange;
- }
-
- hullPoints.Dispose();
- clippedPoints.Dispose();
- points.Dispose();
- }
-
- /// <summary>
- /// Project onto Z=1, scale and offset into [0, tileCount]
- /// </summary>
- float2 ViewToTileSpace(float3 positionVS)
- {
- return (positionVS.xy / positionVS.z * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale;
- }
-
- /// <summary>
- /// Project onto Z=1, scale and offset into [0, tileCount]
- /// </summary>
- float2 ViewToTileSpaceOrthographic(float3 positionVS)
- {
- return (positionVS.xy * viewToViewportScaleBiases[m_ViewIndex].xy + viewToViewportScaleBiases[m_ViewIndex].zw) * tileScale;
- }
-
- /// <summary>
- /// Expands the tile Y range and the X range in the row containing the position.
- /// </summary>
- void ExpandY(float3 positionVS)
- {
- // var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1);
- var positionTS = ViewToTileSpace(positionVS);
- var tileY = (int)positionTS.y;
- var tileX = (int)positionTS.x;
- m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1));
- if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x)
- {
- var rowXRange = tileRanges[m_Offset + 1 + tileY];
- rowXRange.Expand((short)tileX);
- tileRanges[m_Offset + 1 + tileY] = rowXRange;
- }
- }
-
- /// <summary>
- /// Expands the tile Y range and the X range in the row containing the position.
- /// </summary>
- void ExpandOrthographic(float3 positionVS)
- {
- // var positionTS = math.clamp(ViewToTileSpace(positionVS), 0, tileCount - 1);
- var positionTS = ViewToTileSpaceOrthographic(positionVS);
- var tileY = (int)positionTS.y;
- var tileX = (int)positionTS.x;
- m_TileYRange.Expand((short)math.clamp(tileY, 0, tileCount.y - 1));
- if (tileY >= 0 && tileY < tileCount.y && tileX >= 0 && tileX < tileCount.x)
- {
- var rowXRange = tileRanges[m_Offset + 1 + tileY];
- rowXRange.Expand((short)tileX);
- tileRanges[m_Offset + 1 + tileY] = rowXRange;
- }
- }
-
- void ExpandRangeOrthographic(ref InclusiveRange range, float xVS)
- {
- range.Expand((short)math.clamp(ViewToTileSpaceOrthographic(xVS).x, 0, tileCount.x - 1));
- }
-
- static float square(float x) => x * x;
-
- /// <summary>
- /// Finds the two horizon points seen from (0, 0) of a sphere projected onto either XZ or YZ. Takes clipping into account.
- /// </summary>
- static void GetSphereHorizon(float2 center, float radius, float near, float clipRadius, out float2 p0, out float2 p1)
- {
- var direction = math.normalize(center);
-
- // Distance from camera to center of sphere
- var d = math.length(center);
-
- // Distance from camera to sphere horizon edge
- var l = math.sqrt(d * d - radius * radius);
-
- // Height of circle horizon
- var h = l * radius / d;
-
- // Center of circle horizon
- var c = direction * (l * h / radius);
-
- p0 = math.float2(float.MinValue, 1f);
- p1 = math.float2(float.MaxValue, 1f);
-
- // Handle clipping
- if (center.y - radius < near)
- {
- p0 = math.float2(center.x + clipRadius, near);
- p1 = math.float2(center.x - clipRadius, near);
- }
-
- // Circle horizon points
- var c0 = c + math.float2(-direction.y, direction.x) * h;
- if (square(d) >= square(radius) && c0.y >= near)
- {
- if (c0.x > p0.x) { p0 = c0; }
- if (c0.x < p1.x) { p1 = c0; }
- }
-
- var c1 = c + math.float2(direction.y, -direction.x) * h;
- if (square(d) >= square(radius) && c1.y >= near)
- {
- if (c1.x > p0.x) { p0 = c1; }
- if (c1.x < p1.x) { p1 = c1; }
- }
- }
-
- static void GetSphereYPlaneHorizon(float3 center, float sphereRadius, float near, float clipRadius, float y, out float3 left, out float3 right)
- {
- // Note: The y-plane is the plane that is determined by `y` in that it contains the vector (1, 0, 0)
- // and goes through the points (0, y, 1) and (0, 0, 0). This would become a straight line in screen-space, and so it
- // represents the boundary between two rows of tiles.
-
- // Near-plane clipping - will get overwritten if no clipping is needed.
- // `y` is given for the view plane (Z=1), scale it so that it is on the near plane instead.
- var yNear = y * near;
- // Find the two points of intersection between the clip circle of the sphere and the y-plane.
- // Found using Pythagoras with a right triangle formed by three points:
- // (a) center of the clip circle
- // (b) a point straight above the clip circle center on the y-plane
- // (c) a point that is both on the circle and the y-plane (this is the point we want to find in the end)
- // The hypotenuse is formed by (a) and (c) with length equal to the clip radius. The known side is
- // formed by (a) and (b) and is simply the distance from the center to the y-plane along the y-axis.
- // The remaining side gives us the x-displacement needed to find the intersection points.
- var clipHalfWidth = math.sqrt(square(clipRadius) - square(yNear - center.y));
- left = math.float3(center.x - clipHalfWidth, yNear, near);
- right = math.float3(center.x + clipHalfWidth, yNear, near);
-
- // Basis vectors in the y-plane for being able to parameterize the plane.
- var planeU = math.normalize(math.float3(0, y, 1));
- var planeV = math.float3(1, 0, 0);
-
- // Calculate the normal of the y-plane. Found from: (0, y, 1) × (1, 0, 0) = (0, 1, -y)
- // This is used to represent the plane along with the origin, which is just 0 and thus doesn't show up
- // in the calculations.
- var normal = math.normalize(math.float3(0, 1, -y));
-
- // We want to first find the circle from the intersection of the y-plane and the sphere.
-
- // The shortest distance from the sphere center and the y-plane. The sign determines which side of the plane
- // the center is on.
- var signedDistance = math.dot(normal, center);
-
- // Unsigned shortest distance from the sphere center to the plane.
- var distanceToPlane = math.abs(signedDistance);
-
- // The center of the intersection circle in the y-plane, which is the point on the plane closest to the
- // sphere center. I.e. this is at `distanceToPlane` from the center.
- var centerOnPlane = math.float2(math.dot(center, planeU), math.dot(center, planeV));
-
- // Distance from origin to the circle center.
- var distanceInPlane = math.length(centerOnPlane);
-
- // Direction from origin to the circle center.
- var directionPS = centerOnPlane / distanceInPlane;
-
- // Calculate the radius of the circle using Pythagoras. We know that any point on the circle is a point on
- // the sphere. Thus we can construct a triangle with the sphere center, circle center, and a point on the
- // circle. We then want to find its distance to the circle center, as that will be equal to the radius. As
- // the point is on the sphere, it must be `sphereRadius` from the sphere center, forming the hypotenuse. The
- // other side is between the sphere and circle centers, which we've already calculated to be
- // `distanceToPlane`.
- var circleRadius = math.sqrt(square(sphereRadius) - square(distanceToPlane));
-
- // Now that we have the circle, we can find the horizon points. Since we've parametrized the plane, we can
- // just do this in 2D.
-
- // Any of these conditions will yield NaN due to negative square roots. They are signs that clipping is needed,
- // so we fallback on the already calculated values in that case.
- if (square(distanceToPlane) <= square(sphereRadius) && square(circleRadius) <= square(distanceInPlane))
- {
- // Distance from origin to circle horizon edge.
- var l = math.sqrt(square(distanceInPlane) - square(circleRadius));
-
- // Height of circle horizon.
- var h = l * circleRadius / distanceInPlane;
-
- // Center of circle horizon.
- var c = directionPS * (l * h / circleRadius);
-
- // Calculate the horizon points in the plane.
- var leftOnPlane = c + math.float2(directionPS.y, -directionPS.x) * h;
- var rightOnPlane = c + math.float2(-directionPS.y, directionPS.x) * h;
-
- // Transform horizon points to view space and use if not clipped.
- var leftCandidate = leftOnPlane.x * planeU + leftOnPlane.y * planeV;
- if (leftCandidate.z >= near) left = leftCandidate;
-
- var rightCandidate = rightOnPlane.x * planeU + rightOnPlane.y * planeV;
- if (rightCandidate.z >= near) right = rightCandidate;
- }
- }
-
- /// <summary>
- /// Finds the two points of intersection of a 3D circle and the near plane.
- /// </summary>
- static bool GetCircleClipPoints(float3 circleCenter, float3 circleNormal, float circleRadius, float near, out float3 p0, out float3 p1)
- {
- // The intersection of two planes is a line where the direction is the cross product of the two plane normals.
- // In this case, it is the plane containing the circle, and the near plane.
- var lineDirection = math.normalize(math.cross(circleNormal, math.float3(0, 0, 1)));
-
- // Find a direction on the circle plane towards the nearest point on the intersection line.
- // It has to be perpendicular to the circle normal to be in the circle plane. The direction to the closest
- // point on a line is perpendicular to the line direction. Thus this is given by the cross product of the
- // line direction and the circle normal, as this gives us a vector that is perpendicular to both of those.
- var nearestDirection = math.cross(lineDirection, circleNormal);
-
- // Distance from circle center to the intersection line along `nearestDirection`.
- // This is done using a ray-plane intersection, where the plane is the near plane.
- // ({0, 0, near} - circleCenter) . {0, 0, 1} / (nearestDirection . {0, 0, 1})
- var distance = (near - circleCenter.z) / nearestDirection.z;
-
- // The point on the line nearest to the circle center when traveling only in the circle plane.
- var nearestPoint = circleCenter + nearestDirection * distance;
-
- // Any line through a circle makes a chord where the endpoints are the intersections with the circle.
- // The half length of the circle chord can be found by constructing a right triangle from three points:
- // (a) The circle center.
- // (b) The nearest point.
- // (c) A point that is on circle and the intersection line.
- // The hypotenuse is formed by (a) and (c) and will have length `circleRadius` as it is on the circle.
- // The known side if formed by (a) and (b), which we have already calculated the distance of in `distance`.
- // The unknown side formed by (b) and (c) is then found using Pythagoras.
- var chordHalfLength = math.sqrt(square(circleRadius) - square(distance));
- p0 = nearestPoint + lineDirection * chordHalfLength;
- p1 = nearestPoint - lineDirection * chordHalfLength;
-
- return math.abs(distance) <= circleRadius;
- }
-
- static (float, float) IntersectEllipseLine(float a, float b, float3 line)
- {
- // The line is represented as a homogenous 2D line {u, v, w} such that ux + vy + w = 0.
- // The ellipse is represented by the implicit equation x^2/a^2 + y^2/b^2 = 1.
- // We solve the line equation for y: y = (ux + w) / v
- // We then substitute this into the ellipse equation and expand and re-arrange a bit:
- // x^2/a^2 + ((ux + w) / v)^2/b^2 = 1 =>
- // x^2/a^2 + ((ux + w)^2 / v^2)/b^2 = 1 =>
- // x^2/a^2 + (ux + w)^2/(v^2 b^2) = 1 =>
- // x^2/a^2 + (u^2 x^2 + w^2 + 2 u x w)/(v^2 b^2) = 1 =>
- // x^2/a^2 + x^2 u^2 / (v^2 b^2) + w^2/(v^2 b^2) + x 2 u w / (v^2 b^2) = 1 =>
- // x^2 (1/a^2 + u^2 / (v^2 b^2)) + x 2 u w / (v^2 b^2) + w^2 / (v^2 b^2) - 1 = 0
- // We now have a quadratic equation with:
- // a = 1/a^2 + u^2 / (v^2 b^2)
- // b = 2 u w / (v^2 b^2)
- // c = w^2 / (v^2 b^2) - 1
- var div = math.rcp(square(line.y) * square(b));
- var qa = 1f / square(a) + square(line.x) * div;
- var qb = 2f * line.x * line.z * div;
- var qc = square(line.z) * div - 1f;
- var sqrtD = math.sqrt(qb * qb - 4f * qa * qc);
- var x1 = (-qb + sqrtD) / (2f * qa);
- var x2 = (-qb - sqrtD) / (2f * qa);
- return (x1, x2);
- }
-
- /// <summary>
- /// Calculates the horizon of a circle orthogonally projected to a plane as seen from the origin on the plane.
- /// </summary>
- /// <param name="center">The center of the circle projected onto the plane.</param>
- /// <param name="radius">The radius of the circle.</param>
- /// <param name="U">The major axis of the ellipse formed by the projection of the circle.</param>
- /// <param name="V">The minor axis of the ellipse formed by the projection of the circle.</param>
- /// <param name="uv1">The first horizon point expressed as factors of <paramref name="U"/> and <paramref name="V"/>.</param>
- /// <param name="uv2">The second horizon point expressed as factors of <paramref name="U"/> and <paramref name="V"/>.</param>
- static void GetProjectedCircleHorizon(float2 center, float radius, float2 U, float2 V, out float2 uv1, out float2 uv2)
- {
- // U is assumed to be constructed such that it is never 0, but V can be if the circle projects to a line segment.
- // In that case, the solution can be trivially found using U only.
- var vl = math.length(V);
- if (vl < 1e-6f)
- {
- uv1 = math.float2(radius, 0);
- uv2 = math.float2(-radius, 0);
- }
- else
- {
- var ul = math.length(U);
- var ulinv = math.rcp(ul);
- var vlinv = math.rcp(vl);
-
- // Normalize U and V in the plane.
- var u = U * ulinv;
- var v = V * vlinv;
-
- // Major and minor axis of the ellipse.
- var a = ul * radius;
- var b = vl * radius;
-
- // Project the camera position into a 2D coordinate system with the circle at (0, 0) and
- // the ellipse major and minor axes as the coordinate system axes. This allows us to use the standard
- // form of the ellipse equation, greatly simplifying the calculations.
- var cameraUV = math.float2(math.dot(-center, u), math.dot(-center, v));
-
- // Find the polar line of the camera position in the normalized UV coordinate system.
- var polar = math.float3(cameraUV.x / square(a), cameraUV.y / square(b), -1);
- var (t1, t2) = IntersectEllipseLine(a, b, polar);
-
- // Find Y by putting polar into line equation and solving. Denormalize by dividing by U and V lengths.
- uv1 = math.float2(t1 * ulinv, (-polar.x / polar.y * t1 - polar.z / polar.y) * vlinv);
- uv2 = math.float2(t2 * ulinv, (-polar.x / polar.y * t2 - polar.z / polar.y) * vlinv);
- }
- }
-
- static bool IntersectCircleYPlane(
- float y, float3 circleCenter, float3 circleNormal, float3 circleU, float3 circleV, float circleRadius,
- out float3 p1, out float3 p2)
- {
- p1 = p2 = 0;
-
- // Intersecting a circle with a plane yields 2 points, or the whole circle if the plane and the plane of the
- // circle are the same, or nothing if the planes are parallel but offset. We're only interested in the first
- // case. Our other tests will catch the other cases.
-
- // The two points will be on the line of intersection of the two planes. Thus we first have to find that line.
-
- // Shoot 2 rays along the y-plane and intersect the circle plane. We then transform them into the circle
- // plane, so that we can work in 2D.
- var CdotN = math.dot(circleCenter, circleNormal);
- var h1v = math.float3(1, y, 1) * CdotN / math.dot(math.float3(1, y, 1), circleNormal) - circleCenter;
- var h1 = math.float2(math.dot(h1v, circleU), math.dot(h1v, circleV));
- var h2v = math.float3(-1, y, 1) * CdotN / math.dot(math.float3(-1, y, 1), circleNormal) - circleCenter;
- var h2 = math.float2(math.dot(h2v, circleU), math.dot(h2v, circleV));
-
- var lineDirection = math.normalize(h2 - h1);
- // We now have the direction of the line, and would like to find the point on it that is closest to the
- // circle center. A line in 2D is similar to a plane in 3D. So we can calculate a normal, which is just a
- // perpendicular/orthogonal direction, and then take the dot product to find the distance. This is similar
- // to when calculating the d-term for a plane in 3D, which is also just calculating the closest distance
- // from the origin to the plane.
- var lineNormal = math.float2(lineDirection.y, -lineDirection.x);
- var distToLine = math.dot(h1, lineNormal);
- // We can then get that point on the line by following our normal with the distance we just calculated.
- var lineCenter = lineNormal * distToLine;
-
- // Avoid negative square roots, as this means we've hit one of the cases that we do not care about.
- if (distToLine > circleRadius) return false;
-
- // What's left now is to intersect the line with the circle. We can do so with Pythagoras. Our triangle
- // is made up of `lineCenter`, the circle center and one of the intersection points.
- // We know the distance from `lineCenter` to the circle center (`distToLine`), and the distance from
- // the circle center to one of the intersection points must be the circle radius, as it lies on the
- // circle, forming the hypotenuse.
- var l = math.sqrt(circleRadius * circleRadius - distToLine * distToLine);
-
- // What we found above is the distance from `lineCenter` to each of the intersection points. So we just
- // scrub along the line in both directions using the found distance, and then transform back into view
- // space.
- var x1 = lineCenter + l * lineDirection;
- var x2 = lineCenter - l * lineDirection;
- p1 = circleCenter + x1.x * circleU + x1.y * circleV;
- p2 = circleCenter + x2.x * circleU + x2.y * circleV;
-
- return true;
- }
-
- static void GetConeSideTangentPoints(float3 vertex, float3 axis, float cosHalfAngle, float circleRadius, float coneHeight, float range, float3 circleU, float3 circleV, out float3 l1, out float3 l2)
- {
- l1 = l2 = 0;
-
- if (math.dot(math.normalize(-vertex), axis) >= cosHalfAngle)
- {
- return;
- }
-
- var d = -math.dot(vertex, axis);
- // If d is zero, this leads to a numerical instability in the code later on. This is why we make the value
- // an epsilon if it is zero.
- if (d == 0f) d = 1e-6f;
- var sign = d < 0 ? -1f : 1f;
- // sign *= vertex.z < 0 ? -1f : 1f;
- // `origin` is the center of the circular slice we're about to calculate at distance `d` from the `vertex`.
- var origin = vertex + axis * d;
- // Get the radius of the circular slice of the cone at the `origin`.
- var radius = math.abs(d) * circleRadius / coneHeight;
- // `circleU` and `circleV` are the two vectors perpendicular to the cone's axis. `cameraUV` is thus the
- // position of the camera projected onto the plane of the circular slice. This basically creates a new
- // 2D coordinate space, with (0, 0) located at the center of the circular slice, which why this variable
- // is called `origin`.
- var cameraUV = math.float2(math.dot(circleU, -origin), math.dot(circleV, -origin));
- // Use homogeneous coordinates to find the tangents.
- var polar = math.float3(cameraUV, -square(radius));
- var p1 = math.float2(-1, -polar.x / polar.y * (-1) - polar.z / polar.y);
- var p2 = math.float2(1, -polar.x / polar.y * 1 - polar.z / polar.y);
- var lineDirection = math.normalize(p2 - p1);
- var lineNormal = math.float2(lineDirection.y, -lineDirection.x);
- var distToLine = math.dot(p1, lineNormal);
- var lineCenter = lineNormal * distToLine;
- var l = math.sqrt(radius * radius - distToLine * distToLine);
- var x1UV = lineCenter + l * lineDirection;
- var x2UV = lineCenter - l * lineDirection;
- var dir1 = math.normalize((origin + x1UV.x * circleU + x1UV.y * circleV) - vertex) * sign;
- var dir2 = math.normalize((origin + x2UV.x * circleU + x2UV.y * circleV) - vertex) * sign;
- l1 = dir1 * range;
- l2 = dir2 * range;
- }
-
- static float3 EvaluateNearConic(float near, float3 o, float3 d, float r, float3 u, float3 v, float theta)
- {
- var h = (near - o.z) / (d.z + r * u.z * math.cos(theta) + r * v.z * math.sin(theta));
- return math.float3(o.xy + h * (d.xy + r * u.xy * math.cos(theta) + r * v.xy * math.sin(theta)), near);
- }
-
- // o, d, u and v are expected to contain {x or y, z}. I.e. pass in x values to find tangents where x' = 0
- // Returns the two theta values as a float2.
- static float2 FindNearConicTangentTheta(float2 o, float2 d, float r, float2 u, float2 v)
- {
- var sqrt = math.sqrt(square(d.x) * square(u.y) + square(d.x) * square(v.y) - 2f * d.x * d.y * u.x * u.y - 2f * d.x * d.y * v.x * v.y + square(d.y) * square(u.x) + square(d.y) * square(v.x) - square(r) * square(u.x) * square(v.y) + 2f * square(r) * u.x * u.y * v.x * v.y - square(r) * square(u.y) * square(v.x));
- var denom = d.x * v.y - d.y * v.x - r * u.x * v.y + r * u.y * v.x;
- return 2 * math.atan((-d.x * u.y + d.y * u.x + math.float2(1, -1) * sqrt) / denom);
- }
-
- static float2 FindNearConicYTheta(float near, float3 o, float3 d, float r, float3 u, float3 v, float y)
- {
- var sqrt = math.sqrt(-square(d.y) * square(o.z) + 2 * square(d.y) * o.z * near - square(d.y) * square(near) + 2 * d.y * d.z * o.y * o.z - 2 * d.y * d.z * o.y * near - 2 * d.y * d.z * o.z * y + 2 * d.y * d.z * y * near - square(d.z) * square(o.y) + 2 * square(d.z) * o.y * y - square(d.z) * square(y) + square(o.y) * square(r) * square(u.z) + square(o.y) * square(r) * square(v.z) - 2 * o.y * o.z * square(r) * u.y * u.z - 2 * o.y * o.z * square(r) * v.y * v.z - 2 * o.y * y * square(r) * square(u.z) - 2 * o.y * y * square(r) * square(v.z) + 2 * o.y * square(r) * u.y * u.z * near + 2 * o.y * square(r) * v.y * v.z * near + square(o.z) * square(r) * square(u.y) + square(o.z) * square(r) * square(v.y) + 2 * o.z * y * square(r) * u.y * u.z + 2 * o.z * y * square(r) * v.y * v.z - 2 * o.z * square(r) * square(u.y) * near - 2 * o.z * square(r) * square(v.y) * near + square(y) * square(r) * square(u.z) + square(y) * square(r) * square(v.z) - 2 * y * square(r) * u.y * u.z * near - 2 * y * square(r) * v.y * v.z * near + square(r) * square(u.y) * square(near) + square(r) * square(v.y) * square(near));
- var denom = d.y * o.z - d.y * near - d.z * o.y + d.z * y + o.y * r * u.z - o.z * r * u.y - y * r * u.z + r * u.y * near;
- return 2 * math.atan((r * (o.y * v.z - o.z * v.y - y * v.z + v.y * near) + math.float2(1, -1) * sqrt) / denom);
- }
- }
- }
|