123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313 |
- using System.Diagnostics.CodeAnalysis;
- using Unity.Collections;
- using UnityEngine.Assertions;
-
- namespace UnityEngine.Rendering
- {
- /// <summary>
- /// A helper function for interpolating AnimationCurves together. In general, curves can not be directly blended
- /// because they will have keypoints at different places. InterpAnimationCurve traverses through the keypoints.
- /// If both curves have a keypoint at the same time, they keypoints are trivially lerped together. However
- /// if one curve has a keypoint at a time that is missing in the other curve (which is the most common case),
- /// InterpAnimationCurve calculates a synthetic keypoint at that time based on value and derivative, and interpolates
- /// the resulting keys.
- /// Note that this function should only be called by internal rendering code. It creates a small pool of animation
- /// curves and reuses them to avoid creating garbage. The number of curves needed is quite small, since curves only need
- /// to be used when interpolating multiple volumes together with different curve parameters. The underlying interp
- /// function isn't allowed to fail, so in the case where we run out of memory we fall back to returning a single keyframe.
- /// </summary>
- ///
- /// <example>
- /// <code>
- /// {
- /// AnimationCurve curve0 = new AnimationCurve();
- /// curve0.AddKey(new Keyframe(0.0f, 3.0f));
- /// curve0.AddKey(new Keyframe(4.0f, 2.0f));
- ///
- /// AnimationCurve curve1 = new AnimationCurve();
- /// curve1.AddKey(new Keyframe(0.0f, 0.0f));
- /// curve1.AddKey(new Keyframe(2.0f, 1.0f));
- /// curve1.AddKey(new Keyframe(4.0f, 4.0f));
- ///
- /// float t = 0.5f;
- /// KeyframeUtility.InterpAnimationCurve(curve0, curve1, t);
- ///
- /// // curve0 now stores the resulting interpolated curve
- /// }
- /// </code>
- /// </example>
- public class KeyframeUtility
- {
- /// <summary>
- /// Helper function to remove all control points for an animation curve. Since animation curves are reused in a pool,
- /// this function clears existing keys so the curve is ready for reuse.
- /// </summary>
- /// <param name="curve">The curve to reset.</param>
- static public void ResetAnimationCurve(AnimationCurve curve)
- {
- curve.ClearKeys();
- }
-
- static private Keyframe LerpSingleKeyframe(Keyframe lhs, Keyframe rhs, float t)
- {
- var ret = new Keyframe();
-
- ret.time = Mathf.Lerp(lhs.time, rhs.time, t);
- ret.value = Mathf.Lerp(lhs.value, rhs.value, t);
- ret.inTangent = Mathf.Lerp(lhs.inTangent, rhs.inTangent, t);
- ret.outTangent = Mathf.Lerp(lhs.outTangent, rhs.outTangent, t);
- ret.inWeight = Mathf.Lerp(lhs.inWeight, rhs.inWeight, t);
- ret.outWeight = Mathf.Lerp(lhs.outWeight, rhs.outWeight, t);
-
- // it's not possible to lerp the weightedMode, so use the lhs mode.
- ret.weightedMode = lhs.weightedMode;
-
- // Note: ret.tangentMode is deprecated, so we will use the value from the constructor
- return ret;
- }
-
- /// In an animation curve, the inTangent and outTangent don't match the edge of the curve. For example,
- /// the first key might have inTangent=3.0f but the actual incoming tangent is 0.0 because the curve is
- /// clamped outside the time domain. So this helper fetches a key, but zeroes out the inTangent of the first
- /// key and the outTangent of the last key.
- static private Keyframe GetKeyframeAndClampEdge([DisallowNull] NativeArray<Keyframe> keys, int index)
- {
- var lastKeyIndex = keys.Length - 1;
- if (index < 0 || index > lastKeyIndex)
- {
- Debug.LogWarning("Invalid index in GetKeyframeAndClampEdge. This is likely a bug.");
- return new Keyframe();
- }
-
- var currKey = keys[index];
- if (index == 0)
- {
- currKey.inTangent = 0.0f;
- }
- if (index == lastKeyIndex)
- {
- currKey.outTangent = 0.0f;
- }
- return currKey;
- }
-
- /// Fetch a key from the keys list. If index<0, then expand the first key backwards to startTime. If index>=keys.length,
- /// then extend the last key to endTime. Keys must be a valid array with at least one element.
- static private Keyframe FetchKeyFromIndexClampEdge([DisallowNull] NativeArray<Keyframe> keys, int index, float segmentStartTime, float segmentEndTime)
- {
- float startTime = Mathf.Min(segmentStartTime, keys[0].time);
- float endTime = Mathf.Max(segmentEndTime, keys[keys.Length - 1].time);
-
- float startValue = keys[0].value;
- float endValue = keys[keys.Length - 1].value;
-
- // In practice, we are lerping animcurves for post processing curves that are always clamping at the begining and the end,
- // so we are not implementing the other wrap modes like Loop, PingPong, etc.
- Keyframe ret;
- if (index < 0)
- {
- // when you are at a time either before the curve start time the value is clamped to the start time and the input tangent is ignored.
- ret = new Keyframe(startTime, startValue, 0.0f, 0.0f);
- }
- else if (index >= keys.Length)
- {
- // if we are after the end of the curve, there slope is always zero just like before the start of a curve
- var lastKey = keys[keys.Length - 1];
- ret = new Keyframe(endTime, endValue, 0.0f, 0.0f);
- }
- else
- {
- // only remaining case is that we have a proper index
- ret = GetKeyframeAndClampEdge(keys, index);
- }
- return ret;
- }
-
-
- /// Given a desiredTime, interpoloate between two keys to find the value and derivative. This function assumes that lhsKey.time <= desiredTime <= rhsKey.time,
- /// but will return a reasonable float value if that's not the case.
- static private void EvalCurveSegmentAndDeriv(out float dstValue, out float dstDeriv, Keyframe lhsKey, Keyframe rhsKey, float desiredTime)
- {
- // This is the same epsilon used internally
- const float epsilon = 0.0001f;
-
- float currTime = Mathf.Clamp(desiredTime, lhsKey.time, rhsKey.time);
-
- // (lhsKey.time <= rhsKey.time) should always be true. But theoretically, if garbage values get passed in, the value would
- // be clamped here to epsilon, and we would still end up with a reasonable value for dx.
- float dx = Mathf.Max(rhsKey.time - lhsKey.time, epsilon);
- float dy = rhsKey.value - lhsKey.value;
- float length = 1.0f / dx;
- float lengthSqr = length * length;
-
- float m1 = lhsKey.outTangent;
- float m2 = rhsKey.inTangent;
- float d1 = m1 * dx;
- float d2 = m2 * dx;
-
- // Note: The coeffecients are calculated to match what the editor does internally. These coeffeceients expect a
- // t in the range of [0,dx]. We could change the function to accept a range between [0,1], but then this logic would
- // be different from internal editor logic which could cause subtle bugs later.
-
- float c0 = (d1 + d2 - dy - dy) * lengthSqr * length;
- float c1 = (dy + dy + dy - d1 - d1 - d2) * lengthSqr;
- float c2 = m1;
- float c3 = lhsKey.value;
-
- float t = Mathf.Clamp(currTime - lhsKey.time, 0.0f, dx);
-
- dstValue = (t * (t * (t * c0 + c1) + c2)) + c3;
- dstDeriv = (t * (3.0f * t * c0 + 2.0f * c1)) + c2;
- }
-
- /// lhsIndex and rhsIndex are the indices in the keys array. The lhsIndex/rhsIndex may be -1, in which it creates a synthetic first key
- /// at startTime, or beyond the length of the array, in which case it creates a synthetic key at endTime.
- static private Keyframe EvalKeyAtTime([DisallowNull] NativeArray<Keyframe> keys, int lhsIndex, int rhsIndex, float startTime, float endTime, float currTime)
- {
- var lhsKey = KeyframeUtility.FetchKeyFromIndexClampEdge(keys, lhsIndex, startTime, endTime);
- var rhsKey = KeyframeUtility.FetchKeyFromIndexClampEdge(keys, rhsIndex, startTime, endTime);
-
- float currValue;
- float currDeriv;
- KeyframeUtility.EvalCurveSegmentAndDeriv(out currValue, out currDeriv, lhsKey, rhsKey, currTime);
-
- return new Keyframe(currTime, currValue, currDeriv, currDeriv);
- }
-
-
- /// <summary>
- /// Interpolates two AnimationCurves. Since both curves likely have control points at different places
- /// in the curve, this method will create a new curve from the union of times between both curves. However, to avoid creating
- /// garbage, this function will always replace the keys of lhsAndResultCurve with the final result, and return lhsAndResultCurve.
- /// </summary>
- /// <param name="lhsAndResultCurve">The start value. Additionaly, this instance will be reused and returned as the result.</param>
- /// <param name="rhsCurve">The end value.</param>
- /// <param name="t">The interpolation factor in range [0,1].</param>
- static public void InterpAnimationCurve(ref AnimationCurve lhsAndResultCurve, [DisallowNull] AnimationCurve rhsCurve, float t)
- {
- if (t <= 0.0f || rhsCurve.length == 0)
- {
- // no op. lhsAndResultCurve is already the result
- }
- else if (t >= 1.0f || lhsAndResultCurve.length == 0)
- {
- // In this case the obvious solution would be to return the rhsCurve. BUT (!) the lhsCurve and rhsCurve are different. This function is
- // called by:
- // stateParam.Interp(stateParam, toParam, interpFactor);
- //
- // stateParam (lhsCurve) is a temporary in/out parameter, but toParam (rhsCurve) might point to the original component, so it's unsafe to
- // change that data. Thus, we need to copy the keys from the rhsCurve to the lhsCurve instead of returning rhsCurve.
- lhsAndResultCurve.CopyFrom(rhsCurve);
- }
- else
- {
- // Note: If we reached this code, we are guaranteed that both lhsCurve and rhsCurve are valid with at least 1 key
-
- // create a native array for the temp keys to avoid GC
- var lhsCurveKeys = new NativeArray<Keyframe>(lhsAndResultCurve.length, Allocator.Temp);
- var rhsCurveKeys = new NativeArray<Keyframe>(rhsCurve.length, Allocator.Temp);
-
- for (int i = 0; i < lhsAndResultCurve.length; i++)
- {
- lhsCurveKeys[i] = lhsAndResultCurve[i];
- }
-
- for (int i = 0; i < rhsCurve.length; i++)
- {
- rhsCurveKeys[i] = rhsCurve[i];
- }
-
- float startTime = Mathf.Min(lhsCurveKeys[0].time, rhsCurveKeys[0].time);
- float endTime = Mathf.Max(lhsCurveKeys[lhsAndResultCurve.length - 1].time, rhsCurveKeys[rhsCurve.length - 1].time);
-
- // we don't know how many keys the resulting curve will have (because we will compact keys that are at the exact
- // same time), but in most cases we will need the worst case number of keys. So allocate the worst case.
- int maxNumKeys = lhsAndResultCurve.length + rhsCurve.length;
- int currNumKeys = 0;
- var dstKeys = new NativeArray<Keyframe>(maxNumKeys, Allocator.Temp);
-
- int lhsKeyCurr = 0;
- int rhsKeyCurr = 0;
-
- while (lhsKeyCurr < lhsCurveKeys.Length || rhsKeyCurr < rhsCurveKeys.Length)
- {
- // the index is considered invalid once it goes off the end of the array
- bool lhsValid = lhsKeyCurr < lhsCurveKeys.Length;
- bool rhsValid = rhsKeyCurr < rhsCurveKeys.Length;
-
- // it's actually impossible for lhsKey/rhsKey to be uninitialized, but have to
- // add initialize here to prevent compiler erros
- var lhsKey = new Keyframe();
- var rhsKey = new Keyframe();
- if (lhsValid && rhsValid)
- {
- lhsKey = GetKeyframeAndClampEdge(lhsCurveKeys, lhsKeyCurr);
- rhsKey = GetKeyframeAndClampEdge(rhsCurveKeys, rhsKeyCurr);
-
- if (lhsKey.time == rhsKey.time)
- {
- lhsKeyCurr++;
- rhsKeyCurr++;
- }
- else if (lhsKey.time < rhsKey.time)
- {
- // in this case:
- // rhsKey[curr-1].time <= lhsKey.time <= rhsKey[curr].time
- // so interpolate rhsKey at the lhsKey.time.
- rhsKey = KeyframeUtility.EvalKeyAtTime(rhsCurveKeys, rhsKeyCurr - 1, rhsKeyCurr, startTime, endTime, lhsKey.time);
- lhsKeyCurr++;
- }
- else
- {
- // only case left is (lhsKey.time > rhsKey.time)
- Assert.IsTrue(lhsKey.time > rhsKey.time);
-
- // this is the reverse of the lhs key case
- // lhsKey[curr-1].time <= rhsKey.time <= lhsKey[curr].time
- // so interpolate lhsKey at the rhsKey.time.
- lhsKey = KeyframeUtility.EvalKeyAtTime(lhsCurveKeys, lhsKeyCurr - 1, lhsKeyCurr, startTime, endTime, rhsKey.time);
- rhsKeyCurr++;
- }
- }
- else if (lhsValid)
- {
- // we are still processing lhsKeys, but we are out of rhsKeys, so increment lhs and evaluate rhs
- lhsKey = GetKeyframeAndClampEdge(lhsCurveKeys, lhsKeyCurr);
-
- // rhs will be evaluated between the last rhs key and the extrapolated rhs key at the end time
- rhsKey = KeyframeUtility.EvalKeyAtTime(rhsCurveKeys, rhsKeyCurr - 1, rhsKeyCurr, startTime, endTime, lhsKey.time);
-
- lhsKeyCurr++;
- }
- else
- {
- // either lhsValid is True, rhsValid is True, or they are both True. So to miss the first two cases,
- // right here rhsValid must be true.
- Assert.IsTrue(rhsValid);
-
- // we still have rhsKeys to lerp, but we are out of lhsKeys, to increment rhs and evaluate lhs
- rhsKey = GetKeyframeAndClampEdge(rhsCurveKeys, rhsKeyCurr);
-
- // lhs will be evaluated between the last lhs key and the extrapolated lhs key at the end time
- lhsKey = KeyframeUtility.EvalKeyAtTime(lhsCurveKeys, lhsKeyCurr - 1, lhsKeyCurr, startTime, endTime, rhsKey.time);
-
- rhsKeyCurr++;
- }
-
- var dstKey = KeyframeUtility.LerpSingleKeyframe(lhsKey, rhsKey, t);
- dstKeys[currNumKeys] = dstKey;
- currNumKeys++;
- }
-
- // Replace the keys in lhsAndResultCurve with our interpolated curve.
- KeyframeUtility.ResetAnimationCurve(lhsAndResultCurve);
- for (int i = 0; i < currNumKeys; i++)
- {
- lhsAndResultCurve.AddKey(dstKeys[i]);
- }
-
- dstKeys.Dispose();
- }
- }
- }
- }
|