Без опису
Ви не можете вибрати більше 25 тем Теми мають розпочинатися з літери або цифри, можуть містити дефіси (-) і не повинні перевищувати 35 символів.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170
  1. //
  2. // GLSL textureless classic 3D noise "cnoise",
  3. // with an RSL-style periodic variant "pnoise".
  4. // Author: Stefan Gustavson (stefan.gustavson@liu.se)
  5. // Version: 2011-10-11
  6. //
  7. // Many thanks to Ian McEwan of Ashima Arts for the
  8. // ideas for permutation and gradient selection.
  9. //
  10. // Copyright (c) 2011 Stefan Gustavson. All rights reserved.
  11. // Distributed under the MIT license. See LICENSE file.
  12. // https://github.com/stegu/webgl-noise
  13. //
  14. using static Unity.Mathematics.math;
  15. namespace Unity.Mathematics
  16. {
  17. public static partial class noise
  18. {
  19. /// <summary>
  20. /// Classic Perlin noise
  21. /// </summary>
  22. /// <param name="P">Point on a 3D grid of gradient vectors.</param>
  23. /// <returns>Noise value.</returns>
  24. public static float cnoise(float3 P)
  25. {
  26. float3 Pi0 = floor(P); // Integer part for indexing
  27. float3 Pi1 = Pi0 + float3(1.0f); // Integer part + 1
  28. Pi0 = mod289(Pi0);
  29. Pi1 = mod289(Pi1);
  30. float3 Pf0 = frac(P); // Fractional part for interpolation
  31. float3 Pf1 = Pf0 - float3(1.0f); // Fractional part - 1.0
  32. float4 ix = float4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  33. float4 iy = float4(Pi0.yy, Pi1.yy);
  34. float4 iz0 = Pi0.zzzz;
  35. float4 iz1 = Pi1.zzzz;
  36. float4 ixy = permute(permute(ix) + iy);
  37. float4 ixy0 = permute(ixy + iz0);
  38. float4 ixy1 = permute(ixy + iz1);
  39. float4 gx0 = ixy0 * (1.0f / 7.0f);
  40. float4 gy0 = frac(floor(gx0) * (1.0f / 7.0f)) - 0.5f;
  41. gx0 = frac(gx0);
  42. float4 gz0 = float4(0.5f) - abs(gx0) - abs(gy0);
  43. float4 sz0 = step(gz0, float4(0.0f));
  44. gx0 -= sz0 * (step(0.0f, gx0) - 0.5f);
  45. gy0 -= sz0 * (step(0.0f, gy0) - 0.5f);
  46. float4 gx1 = ixy1 * (1.0f / 7.0f);
  47. float4 gy1 = frac(floor(gx1) * (1.0f / 7.0f)) - 0.5f;
  48. gx1 = frac(gx1);
  49. float4 gz1 = float4(0.5f) - abs(gx1) - abs(gy1);
  50. float4 sz1 = step(gz1, float4(0.0f));
  51. gx1 -= sz1 * (step(0.0f, gx1) - 0.5f);
  52. gy1 -= sz1 * (step(0.0f, gy1) - 0.5f);
  53. float3 g000 = float3(gx0.x, gy0.x, gz0.x);
  54. float3 g100 = float3(gx0.y, gy0.y, gz0.y);
  55. float3 g010 = float3(gx0.z, gy0.z, gz0.z);
  56. float3 g110 = float3(gx0.w, gy0.w, gz0.w);
  57. float3 g001 = float3(gx1.x, gy1.x, gz1.x);
  58. float3 g101 = float3(gx1.y, gy1.y, gz1.y);
  59. float3 g011 = float3(gx1.z, gy1.z, gz1.z);
  60. float3 g111 = float3(gx1.w, gy1.w, gz1.w);
  61. float4 norm0 = taylorInvSqrt(float4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  62. g000 *= norm0.x;
  63. g010 *= norm0.y;
  64. g100 *= norm0.z;
  65. g110 *= norm0.w;
  66. float4 norm1 = taylorInvSqrt(float4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  67. g001 *= norm1.x;
  68. g011 *= norm1.y;
  69. g101 *= norm1.z;
  70. g111 *= norm1.w;
  71. float n000 = dot(g000, Pf0);
  72. float n100 = dot(g100, float3(Pf1.x, Pf0.yz));
  73. float n010 = dot(g010, float3(Pf0.x, Pf1.y, Pf0.z));
  74. float n110 = dot(g110, float3(Pf1.xy, Pf0.z));
  75. float n001 = dot(g001, float3(Pf0.xy, Pf1.z));
  76. float n101 = dot(g101, float3(Pf1.x, Pf0.y, Pf1.z));
  77. float n011 = dot(g011, float3(Pf0.x, Pf1.yz));
  78. float n111 = dot(g111, Pf1);
  79. float3 fade_xyz = fade(Pf0);
  80. float4 n_z = lerp(float4(n000, n100, n010, n110), float4(n001, n101, n011, n111), fade_xyz.z);
  81. float2 n_yz = lerp(n_z.xy, n_z.zw, fade_xyz.y);
  82. float n_xyz = lerp(n_yz.x, n_yz.y, fade_xyz.x);
  83. return 2.2f * n_xyz;
  84. }
  85. /// <summary>
  86. /// Classic Perlin noise, periodic variant
  87. /// </summary>
  88. /// <param name="P">Point on a 3D grid of gradient vectors.</param>
  89. /// <param name="rep">Period of repetition.</param>
  90. /// <returns>Noise value.</returns>
  91. public static float pnoise(float3 P, float3 rep)
  92. {
  93. float3 Pi0 = fmod(floor(P), rep); // Integer part, math.modulo period
  94. float3 Pi1 = fmod(Pi0 + float3(1.0f), rep); // Integer part + 1, math.mod period
  95. Pi0 = mod289(Pi0);
  96. Pi1 = mod289(Pi1);
  97. float3 Pf0 = frac(P); // Fractional part for interpolation
  98. float3 Pf1 = Pf0 - float3(1.0f); // Fractional part - 1.0
  99. float4 ix = float4(Pi0.x, Pi1.x, Pi0.x, Pi1.x);
  100. float4 iy = float4(Pi0.yy, Pi1.yy);
  101. float4 iz0 = Pi0.zzzz;
  102. float4 iz1 = Pi1.zzzz;
  103. float4 ixy = permute(permute(ix) + iy);
  104. float4 ixy0 = permute(ixy + iz0);
  105. float4 ixy1 = permute(ixy + iz1);
  106. float4 gx0 = ixy0 * (1.0f / 7.0f);
  107. float4 gy0 = frac(floor(gx0) * (1.0f / 7.0f)) - 0.5f;
  108. gx0 = frac(gx0);
  109. float4 gz0 = float4(0.5f) - abs(gx0) - abs(gy0);
  110. float4 sz0 = step(gz0, float4(0.0f));
  111. gx0 -= sz0 * (step(0.0f, gx0) - 0.5f);
  112. gy0 -= sz0 * (step(0.0f, gy0) - 0.5f);
  113. float4 gx1 = ixy1 * (1.0f / 7.0f);
  114. float4 gy1 = frac(floor(gx1) * (1.0f / 7.0f)) - 0.5f;
  115. gx1 = frac(gx1);
  116. float4 gz1 = float4(0.5f) - abs(gx1) - abs(gy1);
  117. float4 sz1 = step(gz1, float4(0.0f));
  118. gx1 -= sz1 * (step(0.0f, gx1) - 0.5f);
  119. gy1 -= sz1 * (step(0.0f, gy1) - 0.5f);
  120. float3 g000 = float3(gx0.x, gy0.x, gz0.x);
  121. float3 g100 = float3(gx0.y, gy0.y, gz0.y);
  122. float3 g010 = float3(gx0.z, gy0.z, gz0.z);
  123. float3 g110 = float3(gx0.w, gy0.w, gz0.w);
  124. float3 g001 = float3(gx1.x, gy1.x, gz1.x);
  125. float3 g101 = float3(gx1.y, gy1.y, gz1.y);
  126. float3 g011 = float3(gx1.z, gy1.z, gz1.z);
  127. float3 g111 = float3(gx1.w, gy1.w, gz1.w);
  128. float4 norm0 = taylorInvSqrt(float4(dot(g000, g000), dot(g010, g010), dot(g100, g100), dot(g110, g110)));
  129. g000 *= norm0.x;
  130. g010 *= norm0.y;
  131. g100 *= norm0.z;
  132. g110 *= norm0.w;
  133. float4 norm1 = taylorInvSqrt(float4(dot(g001, g001), dot(g011, g011), dot(g101, g101), dot(g111, g111)));
  134. g001 *= norm1.x;
  135. g011 *= norm1.y;
  136. g101 *= norm1.z;
  137. g111 *= norm1.w;
  138. float n000 = dot(g000, Pf0);
  139. float n100 = dot(g100, float3(Pf1.x, Pf0.yz));
  140. float n010 = dot(g010, float3(Pf0.x, Pf1.y, Pf0.z));
  141. float n110 = dot(g110, float3(Pf1.xy, Pf0.z));
  142. float n001 = dot(g001, float3(Pf0.xy, Pf1.z));
  143. float n101 = dot(g101, float3(Pf1.x, Pf0.y, Pf1.z));
  144. float n011 = dot(g011, float3(Pf0.x, Pf1.yz));
  145. float n111 = dot(g111, Pf1);
  146. float3 fade_xyz = fade(Pf0);
  147. float4 n_z = lerp(float4(n000, n100, n010, n110), float4(n001, n101, n011, n111), fade_xyz.z);
  148. float2 n_yz = lerp(n_z.xy, n_z.zw, fade_xyz.y);
  149. float n_xyz = lerp(n_yz.x, n_yz.y, fade_xyz.x);
  150. return 2.2f * n_xyz;
  151. }
  152. }
  153. }