123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322 |
- using System;
- using System.Runtime.CompilerServices;
- using Unity.IL2CPP.CompilerServices;
- using static Unity.Mathematics.math;
-
- namespace Unity.Mathematics.Geometry
- {
- /// <summary>
- /// Axis aligned bounding box (AABB) stored in min and max form.
- /// </summary>
- /// <remarks>
- /// Axis aligned bounding boxes (AABB) are boxes where each side is parallel with one of the Cartesian coordinate axes
- /// X, Y, and Z. AABBs are useful for approximating the region an object (or collection of objects) occupies and quickly
- /// testing whether or not that object (or collection of objects) is relevant. Because they are axis aligned, they
- /// are very cheap to construct and perform overlap tests with them.
- /// </remarks>
- [System.Serializable]
- [Il2CppEagerStaticClassConstruction]
- internal struct MinMaxAABB : IEquatable<MinMaxAABB>
- {
- /// <summary>
- /// The minimum point contained by the AABB.
- /// </summary>
- /// <remarks>
- /// If any component of <see cref="Min"/> is greater than <see cref="Max"/> then this AABB is invalid.
- /// </remarks>
- /// <seealso cref="IsValid"/>
- public float3 Min;
-
- /// <summary>
- /// The maximum point contained by the AABB.
- /// </summary>
- /// <remarks>
- /// If any component of <see cref="Max"/> is less than <see cref="Min"/> then this AABB is invalid.
- /// </remarks>
- /// <seealso cref="IsValid"/>
- public float3 Max;
-
- /// <summary>
- /// Constructs the AABB with the given minimum and maximum.
- /// </summary>
- /// <remarks>
- /// If you have a center and extents, you can call <see cref="CreateFromCenterAndExtents"/> or <see cref="CreateFromCenterAndHalfExtents"/>
- /// to create the AABB.
- /// </remarks>
- /// <param name="min">Minimum point inside AABB.</param>
- /// <param name="max">Maximum point inside AABB.</param>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public MinMaxAABB(float3 min, float3 max)
- {
- Min = min;
- Max = max;
- }
-
- /// <summary>
- /// Creates the AABB from a center and extents.
- /// </summary>
- /// <remarks>
- /// This function takes full extents. It is the distance between <see cref="Min"/> and <see cref="Max"/>.
- /// If you have half extents, you can call <see cref="CreateFromCenterAndHalfExtents"/>.
- /// </remarks>
- /// <param name="center">Center of AABB.</param>
- /// <param name="extents">Full extents of AABB.</param>
- /// <returns>AABB created from inputs.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static MinMaxAABB CreateFromCenterAndExtents(float3 center, float3 extents)
- {
- return CreateFromCenterAndHalfExtents(center, extents * 0.5f);
- }
-
- /// <summary>
- /// Creates the AABB from a center and half extents.
- /// </summary>
- /// <remarks>
- /// This function takes half extents. It is half the distance between <see cref="Min"/> and <see cref="Max"/>.
- /// If you have full extents, you can call <see cref="CreateFromCenterAndExtents"/>.
- /// </remarks>
- /// <param name="center">Center of AABB.</param>
- /// <param name="halfExtents">Half extents of AABB.</param>
- /// <returns>AABB created from inputs.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static MinMaxAABB CreateFromCenterAndHalfExtents(float3 center, float3 halfExtents)
- {
- return new MinMaxAABB(center - halfExtents, center + halfExtents);
- }
-
- /// <summary>
- /// Computes the extents of the AABB.
- /// </summary>
- /// <remarks>
- /// Extents is the componentwise distance between min and max.
- /// </remarks>
- public float3 Extents => Max - Min;
-
- /// <summary>
- /// Computes the half extents of the AABB.
- /// </summary>
- /// <remarks>
- /// HalfExtents is half of the componentwise distance between min and max. Subtracting HalfExtents from Center
- /// gives Min and adding HalfExtents to Center gives Max.
- /// </remarks>
- public float3 HalfExtents => (Max - Min) * 0.5f;
-
- /// <summary>
- /// Computes the center of the AABB.
- /// </summary>
- public float3 Center => (Max + Min) * 0.5f;
-
- /// <summary>
- /// Check if the AABB is valid.
- /// </summary>
- /// <remarks>
- /// An AABB is considered valid if <see cref="Min"/> is componentwise less than or equal to <see cref="Max"/>.
- /// </remarks>
- /// <returns>True if <see cref="Min"/> is componentwise less than or equal to <see cref="Max"/>.</returns>
- public bool IsValid => math.all(Min <= Max);
-
- /// <summary>
- /// Computes the surface area for this axis aligned bounding box.
- /// </summary>
- public float SurfaceArea
- {
- get
- {
- float3 diff = Max - Min;
- return 2 * math.dot(diff, diff.yzx);
- }
- }
-
- /// <summary>
- /// Tests if the input point is contained by the AABB.
- /// </summary>
- /// <param name="point">Point to test.</param>
- /// <returns>True if AABB contains the input point.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public bool Contains(float3 point) => math.all(point >= Min & point <= Max);
-
- /// <summary>
- /// Tests if the input AABB is contained entirely by this AABB.
- /// </summary>
- /// <param name="aabb">AABB to test.</param>
- /// <returns>True if input AABB is contained entirely by this AABB.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public bool Contains(MinMaxAABB aabb) => math.all((Min <= aabb.Min) & (Max >= aabb.Max));
-
- /// <summary>
- /// Tests if the input AABB overlaps this AABB.
- /// </summary>
- /// <param name="aabb">AABB to test.</param>
- /// <returns>True if input AABB overlaps with this AABB.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public bool Overlaps(MinMaxAABB aabb)
- {
- return math.all(Max >= aabb.Min & Min <= aabb.Max);
- }
-
- /// <summary>
- /// Expands the AABB by the given signed distance.
- /// </summary>
- /// <remarks>
- /// Positive distance expands the AABB while negative distance shrinks the AABB.
- /// </remarks>
- /// <param name="signedDistance">Signed distance to expand the AABB with.</param>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public void Expand(float signedDistance)
- {
- Min -= signedDistance;
- Max += signedDistance;
- }
-
- /// <summary>
- /// Encapsulates the given AABB.
- /// </summary>
- /// <remarks>
- /// Modifies this AABB so that it contains the given AABB. If the given AABB is already contained by this AABB,
- /// then this AABB doesn't change.
- /// </remarks>
- /// <seealso cref="Contains(Unity.Mathematics.Geometry.MinMaxAABB)"/>
- /// <param name="aabb">AABB to encapsulate.</param>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public void Encapsulate(MinMaxAABB aabb)
- {
- Min = math.min(Min, aabb.Min);
- Max = math.max(Max, aabb.Max);
- }
-
- /// <summary>
- /// Encapsulate the given point.
- /// </summary>
- /// <remarks>
- /// Modifies this AABB so that it contains the given point. If the given point is already contained by this AABB,
- /// then this AABB doesn't change.
- /// </remarks>
- /// <seealso cref="Contains(Unity.Mathematics.float3)"/>
- /// <param name="point">Point to encapsulate.</param>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public void Encapsulate(float3 point)
- {
- Min = math.min(Min, point);
- Max = math.max(Max, point);
- }
-
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public bool Equals(MinMaxAABB other)
- {
- return Min.Equals(other.Min) && Max.Equals(other.Max);
- }
-
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public override string ToString()
- {
- return string.Format("MinMaxAABB({0}, {1})", Min, Max);
- }
- }
-
- internal static partial class Math
- {
- /// <summary>
- /// Transforms the AABB with the given transform.
- /// </summary>
- /// <remarks>
- /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation.
- /// </remarks>
- /// <param name="transform">Transform to apply to AABB.</param>
- /// <param name="aabb">AABB to be transformed.</param>
- /// <returns>Transformed AABB.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static MinMaxAABB Transform(RigidTransform transform, MinMaxAABB aabb)
- {
- float3 halfExtentsInA = aabb.HalfExtents;
-
- // Rotate each axis individually and find their new positions in the rotated space.
- float3 x = math.rotate(transform.rot, new float3(halfExtentsInA.x, 0, 0));
- float3 y = math.rotate(transform.rot, new float3(0, halfExtentsInA.y, 0));
- float3 z = math.rotate(transform.rot, new float3(0, 0, halfExtentsInA.z));
-
- // Find the new max corner by summing the rotated axes. Absolute value of each axis
- // since we are trying to find the max corner.
- float3 halfExtentsInB = math.abs(x) + math.abs(y) + math.abs(z);
- float3 centerInB = math.transform(transform, aabb.Center);
-
- return new MinMaxAABB(centerInB - halfExtentsInB, centerInB + halfExtentsInB);
- }
-
- /// <summary>
- /// Transforms the AABB with the given transform.
- /// </summary>
- /// <remarks>
- /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation.
- /// </remarks>
- /// <param name="transform">Transform to apply to AABB.</param>
- /// <param name="aabb">AABB to be transformed.</param>
- /// <returns>Transformed AABB.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static MinMaxAABB Transform(float4x4 transform, MinMaxAABB aabb)
- {
- var transformed = Transform(new float3x3(transform), aabb);
- transformed.Min += transform.c3.xyz;
- transformed.Max += transform.c3.xyz;
- return transformed;
- }
-
- /// <summary>
- /// Transforms the AABB with the given transform.
- /// </summary>
- /// <remarks>
- /// The resulting AABB encapsulates the transformed AABB which may not be axis aligned after the transformation.
- /// </remarks>
- /// <param name="transform">Transform to apply to AABB.</param>
- /// <param name="aabb">AABB to be transformed.</param>
- /// <returns>Transformed AABB.</returns>
- [MethodImpl(MethodImplOptions.AggressiveInlining)]
- public static MinMaxAABB Transform(float3x3 transform, MinMaxAABB aabb)
- {
- // From Christer Ericson's Real-Time Collision Detection on page 86 and 87.
- // We want the transformed minimum and maximums of the AABB. Multiplying a 3x3 matrix on the left of a
- // column vector looks like so:
- //
- // [ c0.x c1.x c2.x ] [ x ] [ c0.x * x + c1.x * y + c2.x * z ]
- // [ c0.y c1.y c2.y ] [ y ] = [ c0.y * x + c1.y * y + c2.y * z ]
- // [ c0.z c1.z c2.z ] [ z ] [ c0.z * x + c1.z * y + c2.z * z ]
- //
- // The column vectors we will use are the input AABB's min and max. Simply multiplying those two vectors
- // with the transformation matrix won't guarantee we get the new min and max since those are only two
- // points out of eight in the AABB and one of the other six may set the new min or max.
- //
- // To ensure we get the correct min and max, we must transform all eight points. But it's not necessary
- // to actually perform eight matrix multiplies to get our final result. Instead, we can build the min and
- // max incrementally by computing each term in the above matrix multiply separately then summing the min
- // (or max). For instance, to find the new minimum contributed by the original min and max x component, we
- // compute this:
- //
- // newMin.x = min(c0.x * Min.x, c0.x * Max.x);
- // newMin.y = min(c0.y * Min.x, c0.y * Max.x);
- // newMin.z = min(c0.z * Min.x, c0.z * Max.x);
- //
- // Then we add minimum contributed by the original min and max y components:
- //
- // newMin.x += min(c1.x * Min.y, c1.x * Max.y);
- // newMin.y += min(c1.y * Min.y, c1.y * Max.y);
- // newMin.z += min(c1.z * Min.y, c1.z * Max.y);
- //
- // And so on. Translation can be handled by simply initializing the new min and max with the translation
- // amount since it does not affect the min and max bounds in local space.
- var t1 = transform.c0.xyz * aabb.Min.xxx;
- var t2 = transform.c0.xyz * aabb.Max.xxx;
- var minMask = t1 < t2;
- var transformed = new MinMaxAABB(select(t2, t1, minMask), select(t2, t1, !minMask));
- t1 = transform.c1.xyz * aabb.Min.yyy;
- t2 = transform.c1.xyz * aabb.Max.yyy;
- minMask = t1 < t2;
- transformed.Min += select(t2, t1, minMask);
- transformed.Max += select(t2, t1, !minMask);
- t1 = transform.c2.xyz * aabb.Min.zzz;
- t2 = transform.c2.xyz * aabb.Max.zzz;
- minMask = t1 < t2;
- transformed.Min += select(t2, t1, minMask);
- transformed.Max += select(t2, t1, !minMask);
- return transformed;
- }
- }
- }
|